Pseudo-Riemannian metrics on bicovariant bimodules
نویسندگان
چکیده
We study pseudo-Riemannian invariant metrics on bicovariant bimodules over Hopf algebras. clarify some properties of such and prove that a bimodule its cocycle deformations are in one to correspondence.
منابع مشابه
ON THE LIFTS OF SEMI-RIEMANNIAN METRICS
In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...
متن کاملCompatible and almost compatible pseudo-Riemannian metrics
In this paper, notions of compatible and almost compatible Riemannian and pseudo-Riemannian metrics, which are motivated by the theory of compatible (local and nonlocal) Poisson structures of hydrodynamic type and generalize the notion of flat pencil of metrics (this notion plays an important role in the theory of integrable systems of hydrodynamic type and the Dubrovin theory of Frobenius mani...
متن کاملPseudo-riemannian Metrics in Models Based on Noncommutative Geometry
Several examples and models based on noncommutative differential calculi on commutative algebras indicate that a metric should be regarded as an element of the left-linear tensor product of the space of 1-forms with itself. We show how the metric compatibility condition with a linear connection generalizes to this framework.
متن کاملSobolev Metrics on the Riemannian Manifold of All Riemannian Metrics
On the manifold M(M) of all Riemannian metrics on a compact manifold M one can consider the natural L-metric as decribed first by [10]. In this paper we consider variants of this metric which in general are of higher order. We derive the geodesic equations, we show that they are well-posed under some conditions and induce a locally diffeomorphic geodesic exponential mapping. We give a condition...
متن کاملOn formal Riemannian metrics
Formal Riemannian metrics are characterized by the property that all products of harmonic forms are again harmonic. They have been studied over the last ten years and there are still many interesting open conjectures related to geometric formality. The existence of a formal metric implies Sullivan’s formality of the manifold, and hence formal metrics can exist only in presence of a very restric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales mathématiques Blaise Pascal
سال: 2021
ISSN: ['1259-1734', '2118-7436']
DOI: https://doi.org/10.5802/ambp.394